ĐẶC DIỆM HÌNH THÁI VÀ PHÂN TỬ CỦA VI KHUẤN XENORHABDUS SP. CHÚNG L1 CÔNG SINH VỚI TUYẾN TRỪNG STEINERNEMA LONGICAUDUM PHÂN LẬP Ở VƯỜN QUỐC GIA BA VÌ

LÊ THỊ MAI LINH, NGUYỄN THỊ DUYỆN, NGUYỄN GIANG SƠN
Viện Sinh thái và Tài nguyên sinh vật

PHẠM NGỌC TUYẾN
Trung tâm Quốc gia Giống thủy sản nước ngọt miền Bắc,
Viện Nghiên cứu Nuôi trồng Thủy sản

PHẠN KẾ LONG
Bảo tàng Thiên nhiên Việt Nam

Tuyệt trùng Steinernema spp. đã được biết là vật chủ mang vi khuẩn thuộc giống Xenorhabdus. Vi khuẩn có sinh lý sinh ra các chất trao đổi chất thứ cấp có hoạt tính sinh học như kháng sinh, ngăn chặn sự tăng sinh của các tế bào ung thư...[1, 2, 3, 4]. Trong nghiên cứu này chúng tôi tìm hiểu về đặc điểm hình thái và phân tử của chúng vi khuẩn L1 của Steinernema spp. công sinh với tuyệt trùng S. longicaudum phân lập từ Vườn Quốc gia (VQG) Ba Vì, tạo cơ sở ban đầu cho các nghiên cứu tiếp theo.

1. PHƯƠNG PHÁP NGHIÊN CỨU

Vi khuẩn công sinh nằm trong khoang ruột tuyệt trùng Steinernema longicaudum thu tại VQG Ba Vì, Hà Nội (hiện lưu trữ tại Phòng Tuyến trùng học, Viện Sinh thái và Tài nguyên sinh vật, Viện Khoa học và Công nghệ Việt Nam). Người giữ tuyệt trùng S. longicaudum mang vi khuẩn sinh trên vật chủ là ấu trùng Bướm sáp lớn (Galleria mellonella). Phân lập vi khuẩn công sinh với tuyệt trùng từ xoang máu của G. mellonella chết với biểu hiện đặc trưng do nhiễm tuyệt trùng trên các môi trường NBTA và nuôi cấy ở điều kiện nhiệt độ 30°C. Môi trường phân lập vi khuẩn: Tryptone 1%, cao nấm men 0,5%, NaCl 0,5%, bromothymon blue (BTB) 0,0025%, triphenyletrazolium chloride (TTC) 0,004%, agar 1,5 %, p H 7, khử trùng ở 1 atm/30 phút, để nguội 50°C đổ TTC. Quan sát, ghi nhận đặc điểm khuẩn lạc phát triển trên bề mặt thạch, sự thay đổi màu môi trường xung quanh khuẩn lạc sau thời gian nuôi cấy 24h, 36h.

Trình tự DNA của mẫu nghiên cứu được ráp nối, đối chiếu với các trình tự tương đồng bằng chương trình phần mềm ClustalW (Thompson et al., 1994), phân tích các đặc điểm tiến hóa bằng phần mềm PAUP v4.0 (Swoford, 2003) [5]. Cây phát sinh chúng loài xây dựng theo phương pháp Maximum Likelihood với 1000 lần lạy lại mẫu.
II. KẾT QUẢ NGHIÊN CỨU

1. Đặc điểm phát triển và hình thái của vi khuẩn

Chủng vi khuẩn nghiên cứu phát triển mạnh nhất ở điều kiện nhiệt độ 30°C, sau thời gian nuôi cấy 24h khuẩn lạc đạt tối đường kính 2 mm. Khuẩn lạc có rìa không đều, bề mặt nhẵn, không lồi, màu xanh (pha sơ cấp) hay có màu đỏ sẫm (pha thứ cấp sau 36h) (Hình 1). Môi trường xung quanh khuẩn lạc (pha sơ cấp) đổi màu từ vàng sang xanh. Các vi khuẩn ở pha sơ cấp có khả năng di động, tạo nhu động quanh khuẩn lạc (Hình 2).

Quan sát dưới kính hiển vi ở độ phóng đại 1000x, các tế bào vi khuẩn có dạng hình que, kích thước khoảng 1 x 3-5 µm, có tiên mào, di chuyển được (Hình 3).

![Hình 1: Khuẩn lạc vi khuẩn cộng sinh với Steinernema longicaudum phân lập ở VQG Ba Vì, Hà Nội](image1)

Hình 1: Khuẩn lạc của vi khuẩn cộng sinh với Steinernema longicaudum phân lập ở VQG Ba Vì, Hà Nội
A: Pha sơ cấp, B: Pha thứ cấp

![Hình 2: Môi trường xung quanh khuẩn lạc vi khuẩn cộng sinh với Steinernema longicaudum phân lập ở VQG Ba Vì, Hà Nội](image2)

Hình 2: Môi trường xung quanh khuẩn lạc của vi khuẩn cộng sinh với Steinernema longicaudum phân lập ở VQG Ba Vì, Hà Nội
A: Pha sơ cấp, B: Pha thứ cấp

![Hình 3: Hình ảnh tế bào vi khuẩn cộng sinh](image3)

Hình 3: Hình ảnh tế bào vi khuẩn cộng sinh

2. Đặc điểm phân tử DNA vùng gen khảo sát

Trình tự nucleotide chưng vi khuẩn L1 thu được có chiều dài 1429 bp. Đối chiếu trình tự nghiên cứu với các trình tự 16S-rDNA của các loài vi khuẩn đã được công bố cho thấy có sự tương đồng cao giữa mẫu nghiên cứu với các loài vi khuẩn thuộc giống Xenorhabdus, từ 95-97% (Hình 4). Những khác biệt giữa trình tự nghiên cứu với các trình tự tương đồng được thể hiện trong Bảng 1. Sự khác biệt ghi nhận được ở mức giữa các loài trong cùng giống.

Vùng trình tự nghiên cứu đã đăng giữa các loài, chỉ số đa dạng nucleotide $\pi = 0,038$. Khảo sát trình tự 16S-rDNA trong toàn giông Xenorhabdus ghi nhận 115 vị trí mang thông tin parsimony, 50 vị trí có biến đổi đặc trưng, trong đó chủng vi khuẩn L1 mang 10 biến đổi đặc trưng.
Hình 4: So sánh trình tự nucleotide của vi khuẩn cộng sinh với Steinernema longicaudum phân lập ở VQG Ba Vì, Hà Nội
Vị trí in đậm là biến đổi đặc trưng
HỘI NGHỊ KHOA HỌC TOÁN QUỐC VỀ SINH THÁI VÀ TÀI NGUYỆN SINH VẬT LẦN THỨ 4

Bảng 1

Ma trận khoảng cách di truyền (phía trên bên phải) và số khác biệt nucleotide (phía dưới bên trái)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) X-L1</td>
<td>-</td>
<td>0.0308</td>
<td>0.0308</td>
<td>0.0343</td>
<td>0.0364</td>
<td>0.0410</td>
</tr>
<tr>
<td>(2) X. ehlersii</td>
<td>38</td>
<td>-</td>
<td>0.0233</td>
<td>0.0233</td>
<td>0.0357</td>
<td>0.0310</td>
</tr>
<tr>
<td>(3) X. budapestensis</td>
<td>46</td>
<td>32</td>
<td>-</td>
<td>0.0288</td>
<td>0.0366</td>
<td>0.0426</td>
</tr>
<tr>
<td>(4) X. innexi</td>
<td>51</td>
<td>36</td>
<td>42</td>
<td>-</td>
<td>0.0345</td>
<td>0.0391</td>
</tr>
<tr>
<td>(5) X. stockiae</td>
<td>54</td>
<td>48</td>
<td>48</td>
<td>35</td>
<td>-</td>
<td>0.0404</td>
</tr>
<tr>
<td>(6) X. kozodoii</td>
<td>57</td>
<td>45</td>
<td>55</td>
<td>48</td>
<td>49</td>
<td>-</td>
</tr>
</tbody>
</table>

3. Quan hệ di truyền giữa chủng vi khuẩn L1 với các loài trong chi *Xenorhabdus*

Hình 5: Quan hệ phát sinh loài giữa các loài trong giống *Xenorhabdus* theo phương pháp Maximum Likelihood, số ở các gốc nhánh là giá trị bootstrap (%)

Cây phát sinh loài xây dựng trên cơ sở phân tích các trình tự 16S-rDNA theo phương pháp Maximum Likelihood được thực hiện trên Hình 5. Mô hình Tamura-Nei thích hợp nhất được lựa chọn với phân phối Gamma và hằng định (BIC = 9649.740, AICc = 9230.580, lnL = -4565.211, I = 0.83, γ-shape = 0.66, R = 1.94, A = 0.247, T = 0.197, C = 0.230, G = 0.325).

Cây phát sinh cho thấy các loài trong giống *Xenorhabdus* được chia thành hai nhóm I và II. Nhóm I tách thành 2 phân nhóm la và lb. Chủng vi khuẩn L1 nằm trong nhóm II và ở quan hệ di truyền gần gũi nhất với loài *X. ehlersii* và *X. budapestensis*, gốc phát sinh của X-L1 và 2 loại này được ủng hộ mạnh với giá trị bootstrap 83%. Trong nhóm II, loài *X. bovienii* mang nhiều khác biệt nhất và phân rẽ từ rất sớm khỏi gốc phát sinh chung, loài *X. japonica* và *X. koppenhoeferi* cũng thể hiện nhiều khác biệt với các loài còn lại và hình thành một nhánh phụ tách biệt.
III. KẾT LUẬN

Đã phân lập được chủng vi khuẩn L1 cộng sinh với tuyến trùng S. longicaudum có những đặc điểm phát triển và hình thái khuẩn lạc đặc trưng, có khả năng gây nhiễm trùng huyết côn trùng. Phân tích trình tự gen 16S RNA ribosomal đã giúp xác định vị trí phân loại của chủng vi khuẩn này thuộc giống Xenorhabdus và có quan hệ di truyền khá gần gũi với 2 loài X. ehlersii và X. budapestensis. Hiện nay trên thế giới đã phân lập được loài X. beddingii cộng sinh với tuyến trùng S. longicaudum, nên chủng vi khuẩn L1 chúng tôi phân lập được có thể là loài vi khuẩn mới cộng sinh với tuyến trùng S. longicaudum.

TÀI LIỆU THAM KHẢO

Lời cảm ơn: Bài báo được hoàn thành với sự sự trợ giúp kinh phí của Quỹ Phát triển khoa học và Công nghệ (NAFOSTED), Đề tài số 106.06.16.09.

THE MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION OF XENORHABDUS SP. STRAIN L1 SYMBIOSIS WITH STEINERNEMA LONGICAUDIUM ISOLATED FROM BA VI NATIONAL PARK, VIETNAM

LE THI MAI LINH, NGUYEN THI DUYEN, NGUYEN GIANG SON, PHAM NGOC TUYEN, PHAN KE LONG

SUMMARY

L1 bacterium strain symbiosis with S. longicaudium was isolated from Ba Vi National Park, Viet Nam, has been studying the development characteristics, colony morphology and 16S RNA ribosomal sequence. In our study L1 bacterium strain could be to kill insect by septicemia. Morphology and characteristics development L1 bacterium colony have specific traits as: zigzag border, smooth surface, not protruding, adsorb dye and can change the color of medium surrounding. 16S-rDNA sequences analysis results showed that L1 bacterium strain belongs genus Xenorhabdus and has closely relationship to X. ehlersii and X. budapestensis.